
Neural Networks

Lecture 11
Bayesian learning continued



Bayes Theorem
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Maximum A Posteriori Learning

• This trades-off the prior probabilities of the parameters 
against the probability of the data given the parameters. 
It looks for the parameters that have the greatest product 
of the prior term and the likelihood term.

• Minimizing the squared weights is equivalent to 
maximizing the log probability of the weights under a 
zero-mean Gaussian prior. 
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The Bayesian interpretation of weight decay
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assuming a 
Gaussian prior for 
the weights

assuming that the 
model makes a 
Gaussian prediction

constant

So the correct value of the 
weight decay parameter is 
the ratio of two variances. Its 
not just an arbitrary hack.



Estimating the variance of the output 
noise

• After we have learned a model that minimizes 
the squared error, we can find the best value for 
the output noise.
– The best value is the one that maximizes the 

probability of producing exactly the correct 
answers after adding Gaussian noise to the 
output produced by the neural net.

– The best value is found by simply using the 
variance of the residual errors.



Estimating the variance of the 
Gaussian prior on the weights

• After learning a model with some initial choice of 
variance for the weight prior, we could do a dirty 
trick called “empirical Bayes”.
– Set the variance of the Gaussian prior to be 

whatever makes the weights that the model 
learned most likely.

– This is done by simply fitting a zero-mean 
Gaussian to the one-dimensional distribution 
of the learned weight values.



MacKay’s quick and dirty method of 
choosing the ratio of the noise variance 

to the weight prior variance.

• Start with guesses for both the noise variance 
and the weight prior variance

• Do some learning
• Reset the noise variance to fit the residual errors
• Reset the weight prior varaince to fit the actual 

learned weights.
• Repeat until bored.



Full Bayesian Learning

• Instead of trying to find the best single setting of the 
parameters (as in ML or MAP) compute the full posterior 
distribution over parameter settings
– This is extremely computationally intensive for all but 

the simplest models (its feasible for a biased coin).
• To make predictions, let each different setting of the 

parameters make its own prediction and then combine 
all these predictions by weighting each of them by the 
posterior probability of that setting of the parameters.
– This is also computationally intensive.

• The full Bayesian approach allows us to use complicated 
models even when we do not have much data



Overfitting: A frequentist illusion?

• If you do not have much data, you should use a 
simple model, because a complex one will overfit.
– This is true. But only if you assume that fitting a 

model means choosing a single best setting of 
the parameters.

– If you use the full posterior over parameter 
settings, overfitting disappears! 

– With little data, you get very vague predictions 
because many different parameters settings 
have significant posterior probability



A classic example of overfitting

• Which model do you believe?
– The complicated model fits the 

data better.
– But it is not economical and it 

makes silly predictions.

• But what if we start with a reasonable 
prior over all fifth-order polynomials 
and use the full posterior distribution.
– Now we get vague and sensible 

predictions. 

• There is no reason why the amount of 
data should influence our prior beliefs 
about the complexity of the model.



Approximating full Bayesian learning in a 
neural network

• If the neural net only has a few parameters we could put 
a grid over the parameter space and evaluate p( W | D ) 
at each grid-point.
– This is expensive, but it does not involve any gradient 

descent and there are no local optimum issues.
• After evaluating each grid point we use all of them to 

make predictions on test data
– This is also expensive, but it works much better than 

ML learning when the posterior is vague or 
multimodal (this happens when data is scarce).
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An example of full Bayesian learning

• Allow each of the 6 weights or biases to have 
the 9 possible values [-2 : 0.5 : 2]
– So there are 9^6 grid-points in parameter 

space.
• For each grid-point compute the probability of 

the observed outputs of all the training cases. 
– This is the likelihood term and is explained 

on the next slide
• Multiply the prior for each grid-point by the 

likelihood term and renormalize to get the 
posterior probability for each grid-point.

• Make predictions by using the posterior 
probabilities to average the predictions made by 
the different grid-points. 
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A neural net with 2 
inputs, 1 output 
and 6 parameters



Computing the likelihood term for a logistic 
output unit

• The output of the logistic unit is the probability 
that the network assigns to the answer 1. It 
assigns the complementary probability to the 
answer 0.
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What can we do if there are too many 
parameters for a grid to be feasible?

• The number of grid points is exponential in the number 
of parameters.
– So we cannot deal with more than a few parameters 

using a grid.
• If there is enough data to make most parameter vectors 

very unlikely, only a tiny fraction of the grid points make 
a significant contribution to the predictions.
– Maybe we can just evaluate this tiny fraction

• It might be good enough to just sample weight vectors 
according to their posterior probabilities.
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Sample weight vectors 
with this probability



One method for sampling weight vectors

• In standard backpropagation we keep moving the weights in the 
direction that decreases the cost
– i.e. the direction that increases the log likelihood plus the log prior, 

summed over all training cases.
• Suppose we add some Gaussian noise to the weight vector after each 

update.
– So the weight vector never settles down.
– It keeps wandering around, but it tends to prefer low cost regions 

of the weight space. 
• Amazing fact: If we use just the right amount of noise, and if we let the 

weight vector wander around for long enough before we take a 
sample, we will get a sample from the true posterior over weight 
vectors.
– This is called a “Markov Chain Monte Carlo” method and it makes 

it feasible to use full Bayesian learning with hundreds or thousands 
of parameters.

– There are related MCMC methods that are more complicated but 
more efficient (we don’t need to let the weights wander around for 
so long before we get samples from the posterior). 


