
Neural Networks

Lecture 11
Bayesian learning continued

Bayes Theorem







W
WDpWp

Dp
WDpWpDWp

WDpWpWDpDWpDp

)|()(

)(
)|()()|(

)|()(),()|()(

Prior probability of
weight vector W

Posterior probability
of weight vector W
given training data D

Probability of observed
data given W

joint probability
conditional
probability

)(log)|(log)(log)|(log DpWDpWpDWpCost 

Maximum A Posteriori Learning

• This trades-off the prior probabilities of the parameters
against the probability of the data given the parameters.
It looks for the parameters that have the greatest product
of the prior term and the likelihood term.

• Minimizing the squared weights is equivalent to
maximizing the log probability of the weights under a
zero-mean Gaussian prior.

w 0

p(w)

kwwp

wp

W

w

We






2

2

21

2
)(log

2
)(

2

2






The Bayesian interpretation of weight decay











i
i

W

D

i
i

W
c

c
c

D

wEC

wdyC

DpWpWDpDWp

2
2

2

2
2

12
2

1*

2
)(

2

)(log)(log)|(log)|(log






assuming a
Gaussian prior for
the weights

assuming that the
model makes a
Gaussian prediction

constant

So the correct value of the
weight decay parameter is
the ratio of two variances. Its
not just an arbitrary hack.

Estimating the variance of the output
noise

• After we have learned a model that minimizes
the squared error, we can find the best value for
the output noise.
– The best value is the one that maximizes the

probability of producing exactly the correct
answers after adding Gaussian noise to the
output produced by the neural net.

– The best value is found by simply using the
variance of the residual errors.

Estimating the variance of the
Gaussian prior on the weights

• After learning a model with some initial choice of
variance for the weight prior, we could do a dirty
trick called “empirical Bayes”.
– Set the variance of the Gaussian prior to be

whatever makes the weights that the model
learned most likely.

– This is done by simply fitting a zero-mean
Gaussian to the one-dimensional distribution
of the learned weight values.

MacKay’s quick and dirty method of
choosing the ratio of the noise variance

to the weight prior variance.

• Start with guesses for both the noise variance
and the weight prior variance

• Do some learning
• Reset the noise variance to fit the residual errors
• Reset the weight prior varaince to fit the actual

learned weights.
• Repeat until bored.

Full Bayesian Learning

• Instead of trying to find the best single setting of the
parameters (as in ML or MAP) compute the full posterior
distribution over parameter settings
– This is extremely computationally intensive for all but

the simplest models (its feasible for a biased coin).
• To make predictions, let each different setting of the

parameters make its own prediction and then combine
all these predictions by weighting each of them by the
posterior probability of that setting of the parameters.
– This is also computationally intensive.

• The full Bayesian approach allows us to use complicated
models even when we do not have much data

Overfitting: A frequentist illusion?

• If you do not have much data, you should use a
simple model, because a complex one will overfit.
– This is true. But only if you assume that fitting a

model means choosing a single best setting of
the parameters.

– If you use the full posterior over parameter
settings, overfitting disappears!

– With little data, you get very vague predictions
because many different parameters settings
have significant posterior probability

A classic example of overfitting

• Which model do you believe?
– The complicated model fits the

data better.
– But it is not economical and it

makes silly predictions.

• But what if we start with a reasonable
prior over all fifth-order polynomials
and use the full posterior distribution.
– Now we get vague and sensible

predictions.

• There is no reason why the amount of
data should influence our prior beliefs
about the complexity of the model.

Approximating full Bayesian learning in a
neural network

• If the neural net only has a few parameters we could put
a grid over the parameter space and evaluate p(W | D)
at each grid-point.
– This is expensive, but it does not involve any gradient

descent and there are no local optimum issues.
• After evaluating each grid point we use all of them to

make predictions on test data
– This is also expensive, but it works much better than

ML learning when the posterior is vague or
multimodal (this happens when data is scarce).

),|()|()|(gtesttest
gridg

gtesttest WinputdpDWpinputdp 


An example of full Bayesian learning

• Allow each of the 6 weights or biases to have
the 9 possible values [-2 : 0.5 : 2]
– So there are 9^6 grid-points in parameter

space.
• For each grid-point compute the probability of

the observed outputs of all the training cases.
– This is the likelihood term and is explained

on the next slide
• Multiply the prior for each grid-point by the

likelihood term and renormalize to get the
posterior probability for each grid-point.

• Make predictions by using the posterior
probabilities to average the predictions made by
the different grid-points.

bias

bias

A neural net with 2
inputs, 1 output
and 6 parameters

Computing the likelihood term for a logistic
output unit

• The output of the logistic unit is the probability
that the network assigns to the answer 1. It
assigns the complementary probability to the
answer 0.

 





c
gccg

ccccgcc

gcc

WinputdoutputpWoutputstrainingallp

ydydWinputdoutputp

Winputfy

),|()|(

))((),|(

),(

11

if d=1 if d=0

What can we do if there are too many
parameters for a grid to be feasible?

• The number of grid points is exponential in the number
of parameters.
– So we cannot deal with more than a few parameters

using a grid.
• If there is enough data to make most parameter vectors

very unlikely, only a tiny fraction of the grid points make
a significant contribution to the predictions.
– Maybe we can just evaluate this tiny fraction

• It might be good enough to just sample weight vectors
according to their posterior probabilities.

),|()|(),|(itest
i

testitesttest WinputypDWpDinputyp 

Sample weight vectors
with this probability

One method for sampling weight vectors

• In standard backpropagation we keep moving the weights in the
direction that decreases the cost
– i.e. the direction that increases the log likelihood plus the log prior,

summed over all training cases.
• Suppose we add some Gaussian noise to the weight vector after each

update.
– So the weight vector never settles down.
– It keeps wandering around, but it tends to prefer low cost regions

of the weight space.
• Amazing fact: If we use just the right amount of noise, and if we let the

weight vector wander around for long enough before we take a
sample, we will get a sample from the true posterior over weight
vectors.
– This is called a “Markov Chain Monte Carlo” method and it makes

it feasible to use full Bayesian learning with hundreds or thousands
of parameters.

– There are related MCMC methods that are more complicated but
more efficient (we don’t need to let the weights wander around for
so long before we get samples from the posterior).

